Formation and Stability of the 4-Methoxyphenonium Ion in Aqueous Solution

Yutaka Tsuji,[†] Daisuke Hara,[†] Rui Hagimoto,[†] and John P. Richard^{*,‡}

[†]Department of Biochemistry and Applied Chemistry, Kurume National College of Technology, Komorinomachi, Kurume 830-8555, Japan

[‡]Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260, United States

S Supporting Information

ABSTRACT: The reaction of 2-methoxyphenylethyl tosylate (MeO-1-Ts) is first-order in $[N_3^{-}]$. A carbon-13 NMR analysis of the products of the reactions of MeO-1- $[\alpha^{-13}C]Ts$ shows the formation of MeO-1- $[\beta^{-13}C]OH$ and MeO-1- $[\beta^{-13}C]N_3$ from the trapping of a symmetrical 4-methoxyphenonium ion reaction intermediate 2⁺. An analysis of the rate and product data provides a value of $k_{az}/k_s = 83$ M⁻¹ for partitioning of 2⁺ between addition of azide ion and solvent. These data set a limit for the lifetime of 2⁺ in aqueous solution.

The barriers for addition of the solvent water to many simple carbocations are known.¹ There is good evidence that secondary alkyl carbocations are too unstable to exist in water for the time of a bond vibration^{2,3} and that solvent reorganization with a rate constant $k_r \approx 10^{11} \text{ s}^{-1}$ is the rate rate-limiting step for addition of water to simple tertiary carbocations ($k_s \approx 3 \times 10^{12} \text{ s}^{-1}$, Scheme 1).⁴ Electron-donating

Scheme 1

 α -substituents such as methoxy⁵ and 4-methoxyphenyl^{6,7} (Scheme 1) are required to give carbocations with lifetimes long enough to permit diffusion-controlled bimolecular trapping by added nucleophiles. This leaves bridging phenonium ions, which were at one time the subject of *intense* interest in studies to characterize internal [anchimeric] nucleophilic assistance to solvolysis.⁸ The chemical community continues to study the generation and reaction of these electrophiles;^{9,10} however, there has been no work to determine their lifetimes in aqueous solution.

The first-order rate constant k_{AcOH} for acetolysis of ringsubstituted 2-phenylethyl tosylates (X-1-Ts) is insensitive to changes in electron-withdrawing substituents -X at the aromatic ring (Hammett substituent constant $\rho_X \ge -0.19$), but electron-donating substituents ($\rho_X^+ < -0.19$) cause large

Brief Communication

pubs.acs.org/joc

increases in k_{ACOH} . For example, acetolysis of **MeO-1-Ts** at 115 °C is 34 times faster than acetolysis of the parent 2-phenylethyl tosylate **H-1-Ts**.¹¹ This elegant study shows that acetolysis of **MeO-1-Ts** proceeds with intramolecular displacement of the tosylate ion leaving group to form the bridging 4-methoxyphenonium ion (2⁺, Scheme 2). The symmetrical cation 2⁺

has also been observed by proton NMR in strongly acidic solution. $^{12} \ \ \,$

We prepared MeO-1-[α -¹³C]Ts and determined a value of $k_{solv} = 1.95 \times 10^{-6} \text{ s}^{-1}$ for solvolysis in 50/50 (v/v) TFE/H₂O (I = 0.5, NaClO₄) at 25 °C. A value of (k_{Nu})_{obs} = 3.6 (±0.1) × 10⁻⁶ M⁻¹ s⁻¹ under the same conditions was determined as the slope of a linear plot (not shown) of k_{obs} against [N₃⁻]. Table 1 reports (1) the yields of the products of reactions of azide ion and solvent with MeO-1-[α -¹³C]Ts in 50/50 (v/v) TFE/H₂O (I = 0.5, NaClO₄) and at 25 °C that were determined by HPLC analyses and (2) the relative yields of MeO-1-OH and MeO-1-N₃ labeled with carbon-13 in the α - and β -positions (Scheme

```
Received: October 14, 2011
Published: October 27, 2011
```

Table 1. Yields of the Products of the Reaction of MeO-1- $[\alpha$ - ¹³ C]Ts in 50/50 (v/v) TFE/H ₂ O ($I = 0.5$, NaClO ₄) and at 25	°C in
the Absence and Presence of Azide Anion	

$[N_3^{-}]/M$	$(f_{\rm ROSol})_{\rm T}^{a}$	$([\alpha^{-13}C])/([\beta^{-13}C])^b$	$(f_{\rm RN3})_{\rm T}^{c}$	$([\alpha^{-13}C]^{d})/([\beta^{-13}C])$	MeO-1- $[\alpha$ - ¹³ C]N ₃ ^e	MeO-1- $[\beta^{-13}C]N_3^{e}$
0	1.00	0.99	0.00			
0.01	0.53	1.01	0.47 (0.47)	1.06	0.24	0.23
0.03	0.27	1.05	0.73 (0.73)	1.12	0.39	0.34
0.10	0.094	1.19	0.91 (0.91)	1.42	0.53	0.38
0.20	0.046	1.40	0.95 (0.955)	1.86	0.62	0.33
0.30	0.030	1.61	0.97 (0.97)	2.33	0.68	0.29

^{*a*}The total yield of **MeO-1-OH** and **MeO-1-OTFE**. An average product ratio [MeO-1-OH]/[MeO-1-OTFE] = 16.9 ± 0.3 was determined for the reactions at $[N_3^{-}] = 0.0, 0.01$, and 0.03 M. ^{*b*}The ratio of the yields of **MeO-1-**[α -1³C]OH and **MeO-1-**[β -1³C]OH determined by carbon 13 analyses. ^{*c*}The fractional yield of **MeO-1-N₃**. The values in parentheses are the theoretical yields calculated using eq 3 and the partition rate constant ratios determined from the fit of the data in Figure 1 to eq 3 (see text). ^{*d*}The ratio of the yields of **MeO-1-**[α -1³C]N₃ and **MeO-1-**[β -1³C]N₃ determined by carbon-13 NMR analyses. ^{*c*}The fractional yield of products calculated from (f_{RN3})_T and the ratio of [α -1³C] and [β -1³C] labeled **MeO-1-N₃**.

Scheme 3

3), which were determined by carbon-13 NMR analyses. There was only a low yield of the trifluoroethyl ether **MeO-1-OTFE** (Table 1, footnote *a*).

The total yield of MeO-1-N3 is very much greater than expected if these products were formed exclusively by a bimolecular nucleophilic displacement reaction with $(k_{Nu})_{obs}/$ $k_{soly} = 1.9 \text{ M}^{-1}$. For example, only a 2% yield of MeO-1-N₃ is predicted for the bimolecular substitution reaction of 0.01 M azide ion, but the observed yield is 47% (Table 1). The additional MeO-1-N₃ forms by trapping of 2^+ (k_{az} , Scheme 3). Similar yields of MeO-1- $[\alpha^{-13}C]N_3$ and MeO-1- $[\beta^{-13}C]N_3$ from trapping of 2^+ are observed for the reaction of MeO-1- $[\alpha^{-13}C]$ Ts in the presence of 0.01 M NaN₃ (Table 1). The increase in the excess of the α - compared to the β -labeled product for reactions at the higher $[N_3^-]$ is due to bimolecular substitution of N_3^- at MeO-1- $[\alpha^{-13}C]$ Ts. Essentially identical yields of the α - and β - carbon-13 labeled alcohol form as products of solvolysis of MeO-1- $[\alpha^{-13}C]$ Ts ($[N_3^{-1}] = 0$ M), but an excess of the α -carbon-13 alcohol is observed for reactions at high $[N_3^{-}]$. This is consistent with azide ion catalysis of addition of water ($k_{\rm B}$, Scheme 3) to either the sulfortyl group or to the $[\alpha^{-13}C]$ -carbon of MeO-1- $[\alpha^{-13}C]$ Ts.

Figure 1 shows the effect of increasing $[N_3^-]$ on the azide ion selectivity $(k_{az}/k_s)_{obs}$ (eq 1) for the reaction of MeO-1- $[\alpha^{-13}C]$ Ts, where f_{RN3} and f_{ROSolv} are the fractional yields of MeO-1-N₃ and (MeO-1-OH + MeO-1-OTFE), respectively

Figure 1. Effect of increasing $[N_3^-]$ on the observed rate constant ratio $(k_{az}/k_s)_{obs}$ calculated from the yields of the products of nucleophilic addition of azide anion and solvent to **MeO**- $[\alpha$ -¹³**C**]-1-**Ts** (eq 1) in 50/50 (v/v) TFE/H₂O (I = 0.5, NaClO₄) and at 25 °C.

(Table 1). A linear increase in $(k_{az}/k_s)_{obs}$ (M⁻¹) with increasing $[N_3^-]$ was observed in a previous study of the reactions of 4-methoxybenzyl derivatives, which proceed by competing azide ion bimolecular substitution and trapping of the 4-methoxybenzyl carbocation intermediate.⁶ By comparison, the downward break in the correlation shown in Figure 1 is consistent with the formation of additional MeO-1-[α -¹³C]OSolv from

azide anion catalysis of the direct addition of water to substrate $[k_{\rm B} ({\rm M}^{-1} {\rm s}^{-1})$, Scheme 3]. The solid line shows the theoretical fit of data from Figure 1 to eq 2 derived for Scheme 3 (the derivation is given as Supporting Information) using $[(k_{\rm Nu} + k_{\rm B})/k_{\rm solv}] = (3.64 \times 10^{-6} {\rm M}^{-1} {\rm s}^{-1})/(1.95 \times 10^{-6} {\rm s}^{-1}) = 1.9 {\rm M}^{-1}$ determined above and values of $k_{\rm az}/k_{\rm s} = 83 {\rm M}^{-1}$ and $k_{\rm B}/k_{\rm Nu} = 0.016$ for the variable parameters obtained from the nonlinear least-squares fit of these data. There is good agreement between the total observed yields of **MeO-1-N₃** ($f_{\rm RN3}$)_T and the theoretical yields calculated from eq 3 using the above three rate constant ratios.

$$\left(\frac{k_{\rm az}}{k_{\rm s}}\right)_{\rm obs} = \left(\frac{f_{\rm RN3}}{f_{\rm ROSolv}}\right) \left(\frac{1}{[N_3^-]}\right) \tag{1}$$

$$\left(\frac{k_{az}}{k_{s}}\right)_{obs} = \frac{\left(1 + \frac{k_{az}[N_{3}^{*}]}{k_{s}}\right) + \left(\frac{k_{solv}}{k_{B} + k_{Nu}}\right)\left(\frac{k_{az}}{k_{s}}\right)\left(1 + \frac{k_{B}}{k_{Nu}}\right)}{\left(\frac{k_{B}}{k_{Nu}}\right)\left(1 + \frac{k_{az}[N_{3}^{*}]}{k_{s}}\right)\left[N_{3}^{*}\right] + \left(\frac{k_{solv}}{k_{B} + k_{Nu}}\right)\left(1 + \frac{k_{B}}{k_{Nu}}\right)}$$
(2)

 $(f_{\rm RN3})_{\rm T} =$

$$\frac{\left(\frac{k_{\rm Nu}}{k_{\rm solv}}\right)\left[N_{3}^{*}\right]}{1 + \left(\frac{k_{\rm B} + k_{\rm Nu}}{k_{\rm solv}}\right)\left[N_{3}^{*}\right]} + \frac{\left(\frac{k_{\rm az}}{k_{\rm solv}}\right)\left[N_{3}^{*}\right]}{\left(1 + \left(\frac{k_{\rm B} + k_{\rm Nu}}{k_{\rm solv}}\right)\left[N_{3}^{*}\right]\right)\left(1 + \frac{k_{\rm az}\left[N_{3}^{*}\right]}{k_{\rm s}}\right)}$$
(3)

MeO
$$\longrightarrow$$
 \oplus $O = \bigcirc$ $0 = \bigcirc$ $0 = \bigcirc$ 4
 $k_{\rm s} = 2.5 \text{ x } 10^8 \text{ s}^{-1}$ $k_{\rm s} = 3.4 \text{ x } 10^{-3} \text{ s}^{-1}$ $k_{\rm s} = 3.3 \text{ s}^{-1}$

The azide ion selectivity of $k_{az}/k_s = 83 \text{ M}^{-1}$ requires that the lifetime of 2^+ in water is sufficiently long to allow for its diffusion through the nucleophilic solvent and selection for reaction with strongly nucleophilic azide anion.^{13,14} The *upper* limit for k_{az} is $k_{d} \approx 5 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$ for a diffusion-controlled reaction of 2^+ .¹⁵ Combining this and $k_{az}/k_s = 83 \text{ M}^{-1}$ gives an upper limit of $k_{\rm s} \le 6 \times 10^7 \, {\rm s}^{-1}$ for addition of solvent. We expect that $k_{\rm s}$ for addition of solvent to ${\bf 2}^+$ is smaller than 2 imes 10^8 s⁻¹ observed for the 4-methoxybenzyl carbocation because $k_{\rm s} = 3.4 \times 10^{-3} \, {\rm s}^{-1}$ for addition of solvent to the neutral spiro[2,5] octa-1,4-diene-3-one¹⁶ is 1000-fold smaller than $k_s =$ 3.3 s⁻¹ for addition of solvent to the unsubsituted *p*-quinone methide 4^{17} while O-methylation of 4 causes a 10^8 -fold increase in electrophile reactivity.¹⁸ We suggest that the rate constants for addition of nucleophiles to 2^+ lie closer to $k_s = 10^5$ s^{-1} and $k_{az} = 10^7 \text{ M}^{-1} \text{ s}^{-1}$ for the addition of azide ion and solvent, that are estimated from $k_{az}/k_s = 83 \text{ M}^{-1}$, and assuming that O-methylation causes similar $\sim 10^8$ -fold increases in k_s for addition of solvent to 3 and 4.

The value of $\log(k_{az}/k_s) = 1.9$ for the reaction of 2⁺ is smaller than the Swain–Scott nucleophilicity parameter of n = 3.9determined for the reaction of azide anion with methyl bromide.¹⁹ This decrease in selectivity for nucleophile addition to the more reactive electrophile *might* reflect the different diffusion-limited ($k_d = k_{az} = 5 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$) and activationlimited rate constants for addition of azide ion and solvent to 2⁺, if $k_s = 6 \times 10^7 \text{ s}^{-1}$ for addition of solvent to 2⁺. However, we suggest that this decrease in selectivity with increasing electrophile reactivity is due to a change in the structure of the transition state for nucleophile addition, that results in a weakening in the bonding to the reacting nucleophile.²⁰ A similar shift in transition state structure has been proposed to rationalize the smaller selectivity of methyl perchlorate compared to methyl iodide toward reaction with nucleophilic anions.¹⁹

EXPERIMENTAL SECTION

Potassium [¹³C]-cyanide (99% enriched) was purchased from a commercial supplier. All other organic and inorganic chemicals were reagent grade from commercial sources and were used without further purification. 2-(4-Methoxyphenyl)[1-¹³C]ethanol [MeO-1- $[\alpha$ -¹³C]OH] was synthesized according to a published procedure.²¹

Carbon-13 NMR Analyses. Proton-decoupled ¹³C NMR spectra were recorded at 100.4 MHz. Chemical shifts were measured in ppm, relative to a value of δ = 77.0 ppm for CDCl₃. A pulse angle of 45° was employed to obtain spectra centered at 55.0 ppm, which spanned 7042.25 Hz and contained 65000K data points (0.107 Hz/pt). Several delay times between FT pulses, ranging from 8 to 70 s, were examined. Identical ratios of the peak areas for carbon-1 and carbon-2 of 2-(4-methoxyphenyl)ethyl derivatives were observed at 35 and 70 s delay times, and the longer relaxation time of 70 s was used for these spectra. Generally >1000 FT transients were averaged before the final spectra were determined.

Kinetic and Product Studies. The progress of the reactions of MeO-1- $[\alpha^{-13}C]$ Ts in 50/50 (v/v) TFE/H₂O (I = 0.5, NaClO₄) and at 25 °C in the absence or in the presence of N_3^- was monitored by HPLC analyses as described in previous work. 6,18 The reactions were initiated by making a 100-fold dilution of 2-(4-methoxyphenyl)ethyl tosylate dissolved in acetonitrile into 20 mL of 50/50 (v/v) TFE/H₂O $(I = 0.5 \text{ (NaClO}_4)$. The final substrate concentration was 2 mM for reactions in the presence of 0, 0.1, 0.2, and 0.3 M azide anion and 0.3 mM for reactions in the presence of 0.01 and 0.03 M azide anion. At specified times, aliquots of 100 μ L were applied directly onto an HPLC column for analysis. The reactant and products were separated by gradient elution using a mixed MeOH/H₂O solvent.²² The peaks for the substrate and product were monitored at 276 nm, which is λ_{max} for 2-(4-methoxyphenyl)ethyl alcohol and 2-(4-methoxyphenyl)ethyl azide. A value of $\varepsilon_{\rm ROTs}/\varepsilon_{\rm R-Nu}$ = 1.17 for the ratio of extinction coefficients of MeO-1-Ts and MeO-1-OH at 276 nm was determined by comparing the HPLC peak areas at 276 nm of known concentrations of MeO-1-Ts and MeO-1-OH. The sum of the peak areas from HPLC analyses at 276 nm for MeO-1-OH and MeO-1-N₃ remained constant as $[N_3^-]$ was increased from 0.00 [100% yield of MeO-1-OSolv] to 0.30 M [97% yield of MeO-1-N₃]. This shows that these products have the same extinction coefficient at $\lambda_{max} = 276$ nm.

The decrease in the HPLC peak area (A_{ROTs}) for the reactant **MeO-1-Ts** was monitored for ca. 2-reaction halftimes, and first-order reaction rate constants were determined as the slopes of semilogarithmic plots of reaction progress f_{S} (eq 1) against time, where ΣA_{RNu} is the sum of the peak areas for the products **MeO-1-OH** (A_{ROH}) **MeO-1-OCH₂CF₃** (A_{ROTE}), and **MeO-1-N₃** (A_{RN3}). The ratio of the yields of the products of the reactions of **MeO-1-Ts** in 50/ 50 (v/v) TFE/H₂O at I = 0.5 (NaClO₄) was determined directly from the ratio of the HPLC peak areas for the products using eq 5 because **MeO-1-OSolv** and **MeO-1-N₃** have the same extinction coefficient at $\lambda_{\text{max}} = 276$ nm (see above).

$$f_{\rm S} = \frac{(A_{\rm ROTs})/1.17}{(A_{\rm ROTs})/1.17 + \sum A_{\rm RNu}}$$
(4)

$$\left(\frac{f_{\rm RN3}}{f_{\rm ROSolv}}\right) = \frac{A_{\rm RNu}}{A_{\rm ROH} + A_{\rm ROTFE}} \tag{5}$$

At ca. 2 half-times for the reaction of MeO-1- $[\alpha$ -¹³C]Ts the remaining substrate and the products were extracted into either ether or toluene. The organic layer was washed with water, dried over MgSO₄, and then removed using a rotary evaporator. The resulting

sample was dissolved in 0.6 mL of CDCl₃ for ¹³C NMR analysis. The relative yields of products labeled with carbon-13 in the α - and β -position were determined by integration of the following product peaks: MeO-1-[α -¹³C]OH at 63.83 ppm; MeO-1-[β -¹³C]OH at 38.24 ppm; MeO-1-[α -¹³C]OCH₂CF₃ at 73.87 ppm; MeO-1-[β -¹³C]-OCH₂CF₃ at 35.23 ppm; MeO-1-[α -¹³C]N₃ at 52.69 ppm; MeO-1-[β -¹³C]-I β -¹³C]N₃ at 34.19 ppm.

ASSOCIATED CONTENT

Supporting Information

Derivation of the relationship between the observed product selectivity $(k_{az}/k_s)_{obs}$ and the rate constants from Scheme 3. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: jrichard@buffalo.edu.

ACKNOWLEDGMENTS

We acknowledge the National Institutes of Health (Grant No. GM39754) for generous support of this work.

REFERENCES

(1) More O'Ferrall, R. Adv. Phy. Org. Chem. 2010, 44, 19-122.

(2) Dietze, P. E.; Jencks, W. P. J. Am. Chem. Soc. 1986, 108, 4549-4555.

(3) Dietze, P. E.; Jencks, W. P. J. Am. Chem. Soc. 1987, 109, 2057–2062.

(4) Toteva, M. M.; Richard, J. P. J. Am. Chem. Soc. 1996, 118, 11434-11445.

(5) Amyes, T. L.; Jencks, W. P. J. Am. Chem. Soc. 1989, 111, 7888-7900.

(6) Amyes, T. L.; Richard, J. P. J. Am. Chem. Soc. 1990, 112, 9507-9512.

(7) Toteva, M. M.; Richard, J. P. J. Am. Chem. Soc. 2002, 124, 9798–9805.

(8) Lancelot, C. J.; Cram, D. J.; Schleyer, P. v. R. Carbonium Ions 1972, 3, 1347-1483.

(9) Protti, S.; Dondi, D.; Mella, M.; Fagnoni, M.; Albini, A. *Eur. J. Org. Chem.* **2011**, *17*, 3229–3237.

(10) Manet, I.; Monti, S.; Grabner, G.; Protti, S.; Dondi, D.; Dichiarante, V.; Fagnoni, M.; Albini, A. *Chem.—Eur. J.* **2008**, *14*, 1029–1039.

(11) Fujio, M.; Funatsu, K.; Goto, M.; Seki, Y.; Mishima, M.; Tsuno, Y. Bull. Chem. Soc. Jpn. **1987**, 60, 1091–1095.

(12) Olah, G. A.; Comisarow, M. B.; Namanworth, E.; Ramsey, B. J. Am. Chem. Soc. **1967**, 89, 5259–5265.

(13) Richard, J. P.; Rothenberg, M. E.; Jencks, W. P. J. Am. Chem. Soc. 1984, 106, 1361–1372.

(14) Richard, J. P.; Jencks, W. P. J. Am. Chem. Soc. 1984, 106, 1373–1383.

(15) McClelland, R. A. Tetrahedron 1996, 52, 6823-6858.

(16) Baird, R.; Winstein, S. J. Am. Chem. Soc. 1957, 79, 4238-4240.

(17) Chiang, Y.; Kresge, A. J.; Zhu, Y. J. Am. Chem. Soc. 2002, 124, 6349-6356.

(18) Toteva, M. M.; Moran, M.; Amyes, T. L.; Richard, J. P. J. Am. Chem. Soc. 2003, 125, 8814–8819.

(19) Koskikallio, J. Acta Chem. Scand. 1969, 23, 1477-1489.

(20) Jencks, W. P. Chem. Rev. 1985, 85, 511-527.

(21) Seki, Y.; Fujio, M.; Mishima, M.; Tsuno, Y. Mem. Fac. Sci., Kyushu Univ., Ser. C 1980, 12, 197–208.

(22) Richard, J. P. J. Am. Chem. Soc. 1989, 111, 1455-1465.